vektor dan operasi vektor

Besaran Skalar

Pada saat anda menghitung luas sebuah bidang bujur sangkar, maka anda hanya menyebut angka (nilai) nya  saja, misalkan 25 cm² Demikian pula, saat anda membeli dan menimbang satu keranjang buah mangga, maka pada timbangan tertera angka yang menunjukkan massa mangga tersebut, misalkan 4 kg.

Pada contoh tersebut diatas,  besaran Luas bujur sangkar dan Massa mangga merupakan besaran skalar, yaitu besaran yang hanya memilik besar (nilai) saja dan tidak memiliki arah.

Contoh  besaran Skalar  yaitu, panjang,  massa, waktu, suhu, massa jenis, volume, enegi potensial,  usaha, potensial listrik,  energi listrik dan lainsebagainya.

Besaran Vektor

Jika sebuah mangga yang anda beli tadi, berada dalam  genggaman tangan anda, yang semula diam, kemudian terjatuh. Apa yang anda amati? Buah mangga tersebut jatuh kearah lantai, yang disebabkan oleh Gravitasi Bumi (Gaya).  Pada gerak mangga, dari keadaan diam bergerak dengan kecepatan yang terus bertambah dengan arah kebawah hingga menyentuh lantai. Dari kejadian tersebut,  kita dapat menyebutkan bahwa, besaran Gaya dan besaran Kecepatan merupakan besaran Vektor, yaitu besaran yang memilik nilai dan arah.

Vektor dapat dituliskan dalam huruf kecil dan besar, atau dengan dua huruf seperti berikut :

Operasi Vektor  :

Dalam penggunaan Vektor, dua buah vektor atau lebih dapat dijumlah, dikurang, dikalikan atau dibagi.  Kegiatan ini disebut Operasi vektor.

Penjumlahan dan pengurangan Vektor.
Menjumlahkan dan mengurangkan Vektor dapat ditempuh dengan cara (metode)  Jajaran Genjang, Segitiga dan Segi banyak (Polygon)

Soal No. 1
Diberikan dua buah vektor gaya yang sama besar masing-masing 10 Newton seperti gambar berikut.

Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan nilai resultan kedua vektor!

Pembahasan
Resultan untuk dua buah vektor yang telah diketahui sudutnya

Gambar perhitungan matematika resultan vektor

Soal No. 2
Dua buah vektor kecepatan P dan Q masing-masing besarnya 40 m/s dan 20 m/s membentuk sudut 60°.

Tentukan selisih kedua vektor tersebut!

Pembahasan
Menentukan selisih dua buah vektor yang diketahui sudutnya:

Soal No. 3
Dua buah vektor gaya masing – masing 8 N dan 4 N saling mengapit sudut 120°. Tentukan besar resultan kedua vektor tersebut!

Pembahasan
Data:
F1 = 8 N
F2 = 4 N
α = 120°
R = ……..

Catatan rumus:
cos (180° − α) = cos α

Sehingga untuk nilai cos 120°:

cos 120° = cos (180° − 60°) = − cos 60° = − 1/2

Soal No. 4

Perhatikan gambar berikut!
Jika satu kotak mewakili 10 Newton, tentukan resultan antara kedua vektor!
Pembahasan
Cari jumlah resultan pada sumbu x dan sumbu y, cukup dengan menghitung kotak dari masing-masing vektor, F1 adalah 30 ke kanan, 40 ke atas, sementara F2 adalah 50 ke kanan, 20 ke atas, kemudian masukkan rumus resultan:
Penyelesaian matematis jumlah vektor pada sumbu x dan sumbu y
Soal No. 5
Diberikan 3 buah vektor F1=10 N, F2 =25 N dan F3=15 N seperti gambar berikut.
Tentukan:
a. Resultan ketiga vektor
b. Arah resultan terhadap sumbu X
 [Sin 37° = (3/5), Sin 53° = (4/5)]
 [Cos 37° = (4/5), Cos 53° = (3/5)]
 
Pembahasan
a. Ikuti langkah-langkah berikut:
1. Uraikan semua vektor ke sumbu x dan sumbu y (kecuali vektor yang sudah lurus pada sumbu x atau y seperti F2). Lihat gambar di bawah!
2. Cari jumlah vektor pada sumbu x ( kanan +, kiri -)
3. Cari jumlah vektor pada sumbu y (atas +, bawah -)
4. Masukkan rumus resultan

Vektor yang dalam perhitungan selanjutnya tidak digunakan lagi karena sudah diuraikan tadi, dihapus saja, agar kelihatan lebih bersih, sisanya seperti ini:


Jumlah komponen vektor-vektor  pada sumbu x dan  y :
Gambar perhitungan matematis metode analitik vektor

b. Mencari sudut yang terbentuk antara resultan vektor R dengan sumbu x

tan θ =  ΣFy /ΣFx
tan θ = −7/−1 = 7
θ = arc. tan 7 = 81,87°

Thanks to PCP http://journalputrika.blogspot.com atas koreksinya🙂

Soal No. 6
Ditentukan 2 buah vektor F yang sama besarnya. Bila perbandingan antara besar jumlah dan besar selisih kedua vektor sama dengan √3, tentukan besar sudut yang dibentuk oleh kedua vektor! (Sumber Soal : SPMB)

Pembahasan
Jumlah dan selisih kedua vektor masing-masing adalah:

Gambar rumus jumlah dan selisih dua buah vektor

Perbandingan jumlah dan selisihnya adalah √3 sehingga:

Kuadratkan ruas kiri dan kanan

Kali silang :

Soal No. 7
Sebuah perahu menyeberangi sungai yang lebarnya 180 m dan kecepatan airnya 4 m/s. Bila perahu diarahkan menyilang tegak lurus dengan kecepatan 3 m/s, tentukan panjang lintasan yang ditempuh perahu hingga sampai ke seberang sungai! (Sumber Soal : UMPTN)

Pembahasan
Asumsikan bahwa perahu bergerak lurus beraturan menempuh lintasan AD dan resultan kecepatan perahu dan air adalah 5 m/s (gunakan aturan Phytagoras). Dengan membandingkan sisi-sisi segitiga ABC dan ADE :
Tips
“Untuk dua buah vektor dengan besar yang sama dan membentuk sudut 120o maka  resultan kedua vektor besarnya akan sama dengan besar salah satu vektor”
Berikut ilustrasinya:
 Gambar dua buah vektor dengan sudut 120 derajad
Dua buah vektor dengan besar yang sama yaitu 10 N membentuk sudut 120o maka nilai resultan kedua vektor juga 10 N.
Berikut contoh soal diambil dari soal EBTANAS (UN tempo dulu, zaman kakak-kakak kita) tahun 2000.
Perhatikan gambar gaya-gaya di bawah ini!
 Gambar 3 buah vektor dengan sudut 60 derajad
Besar resultan ketiga gaya tersebut adalah….
A. 2,0 N
B. 2 √3 N
C. 3,0 N
D. 3 √3 N
E. 4√3 N
Pada soal di atas 2 buah vektor (gaya) 3 N membentuk sudut 120o, sehingga resultan kedua gaya  juga 3 N. Resultan kedua gaya ini akan segaris dengan gaya 6 N, namun berlawanan arah. Sehingga dengan mudah soal ini bisa dijawab resultan ketiga gaya adalah 6 N dikurangi 3 N hasilnya adalah 3 N.Soal No. 8
Diberikan 3 buah vektor :
a = 2i + 3j satuan
b = 4i + 5j satuan
c = 6i + 7j satuan
Tentukan besar resultan ketiga vektor, dan kemiringan sudut antara resultan dan sumbu X

Data:

Gambar solusi 3 buah vektor dalam i dan j

Untuk lebih jelas berikut ilustrasinya:

12 pada sumbu x
15 pada sumbu y

Arahnya adalah sudut θ yang bisa dicari dari sin θ, cos θ maupun tan θ. Jika dicari dari tan θ maka yang dibandingkan nilai pada sumbu y dengan nilai pada sumbu x. Jika dicari dari sin θ yang dibandingkan nilai pada sumbu y dengan nilai resultan R, jika digunakan cos θ bandingkan nilai pada sumbu x dengan nilai resultan R.Soal No. 9
Diberikan 3 buah vektor a, b, c seperti gambar di bawah.

Gambar 3 buah vektor a,b c dengan arahnya

Dengan metode poligon tunjukkan :
(i) d = a + b + c
(ii) d = a + bc
(iii) d = ab + c

Pembahasan

Dengan metode poligon :
(i) d = a + b + c

Pembahasan vektor poligon (1)

(ii) d = a + bc

Pembahasan vektor poligon (2)

(iii) d = ab + c

Pembahasan vektor poligon (3)
Soal No. 10
Diberikan dua buah vektor masing-masing vektor dan besarnya adalah A = 8 satuan,   B = 10 satuan. Kedua vektor ini membentuk sudut 37°. Tentukan hasil dari:
a) A⋅ B
b) A × B

Pembahasan
a) A⋅ B adalah perkalian titik (dot) antara vektor A dan vektor B
Untuk perkalian titik berlaku
A⋅ B = A B cos θ
Sehingga
A⋅ B = A B cos 37° = (8)(10)(0,8) = 64 satuan

b) A × B adalah perkalian silang (cross) vektor A dan vektor B
Untuk perkalian silang berlaku
A × B = A B sin θ
Sehingga
A × B = A B sin 37° = (8)(10)(0,6) = 48 satuan

Soal No. 11
Sebuah gaya F = (2i + 3j) N melakukan usaha dengan titik tangkapnya berpindah menurut r = (4i + aj) m dan vektor i dan j berturut-turut adalah vektor satuan yang searah dengan sumbu x dan sumbu y pada koordinat kartesian. Bila usaha itu bernilai 26 J, maka nilai a sama dengan…
A. 5
B. 6
C. 7
D. 8
E. 12
Sumber: Soal UMPTN Tahun 1991

Pembahasan
Soal ini adalah soal penerapan perkalian titik (dot product ) antara vektor gaya F dan vektor perpindahan r dengan kedua vektor dalam bentuk i dan j atau vektor satuan. Besaran yang dihasilkan nantinya adalah skalar (usaha termasuk besaran skalar, hanya memiliki besar, tanpa arah). Usaha dilambangkan dengan W dari kata work.
W = F ⋅ r
26 = (2i + 3j)⋅ (4i + aj)

Cara perkalian titik  dua vektor  dalam bentuk i,j adalah yang i kalikan i, yang j kalikan j, hingga seperti berikut
26 = 8 + 3a
3a = 26 − 8
a = 18/3 = 6

i dan j nya jadi hilang karena i kali i atau j kali j hasilnya adalah satu.

Bagaimana cara perkalian silang dua vektor dalam bentuk i dan j ? ntar kita tambahkan,…IA

Soal No. 12
Diberikan dua buah vektor masing-masing:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Tentukan hasil dari A × B

Pembahasan
Perkalian silang, A × B

Cara pertama:
Misal :
A = (Ax i + Ay j + Az k) dan B = (Bx i + By j + Bz k)

maka :

A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k

Rumus Perkalian Silang Dua Vektor (cross product ) dalam i, j, k

Data :
A = 4i + 3j − 2k
B = 7i + 2j + 5k

Ax = 4
Ay = 3
Az = − 2
Bx = 7
By = 2
Bz = 5

maka
A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k
A × B = [(3)(5) − (−2)(2)] i + [(−2)(7) − (4)(5)]j + [(4)(2) − (3)(7)] k
A × B = (15 + 4)i + (−14 − 20)j + (8 − 21)k
A × B = 19 i −34 j − 13k

Lumayan repot kalau mau dihafal rumus perkalian di atas, alternatifnya dengan cara yang kedua,

Cara Kedua:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Susun dua vektor di atas hingga seperti bentuk berikut:

Untuk mempermudah perkalian, tambahkan dua kolom di sebelah kanan susunan yang telah dibuat tadi hingga seperti berikut:

Beri tanda plus dan minus, ikuti contoh berikut:

Kalikan menyilang ke bawah terlebih dahulu dengan memperhatikan tanda plus minus yang telah dibuat, lanjutkan dengan menyilang ke atas,

A × B = (3)(5) i + (−2)(7) j + (4)(2)k − (7)(3)k − (2)(−2) i − (5)(4) j
A × B = 15 i −14 j + 8 k − 21k + 4 i − 20j
A × B = (15 + 4) i + (− 14 − 20) j + (8 − 21) k
A × B = 19 i − 34 j − 13 k

2 comments on “vektor dan operasi vektor

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s